Spiral wave teleportation theory offers new path to defibrillate hearts, terminate arrhythmias

Spiral wave teleportation theory offers new path to defibrillate hearts, terminate arrhythmias

25/06/2022

A spiral wave of electrical activity in the heart can cause catastrophic consequences. One spiral wave creates tachycardia — a heart rate that’s too fast — and multiple spirals cause a state of disorganized contraction known as fibrillation. Researchers from the Georgia Institute of Technology offer a new method to disrupt spiral waves that uses less energy and that may be less painful than traditional defibrillation.

This research has been ongoing in School of Physics Professor Flavio Fenton’s lab with his student Noah DeTal and research scientist Abouzar Kaboudian. Their latest findings are published in the paper, “Terminating Spiral Waves with a Single Designed Stimulus: Teleportation as the Mechanism for Defibrillation,” in the journal Proceedings of the National Academy of Science.

The Problem with Spiral Waves

Electrical waves enable the heart to contract and send blood throughout the body. When a wave becomes a spiral, its rotation is faster than the heart’s natural pacemaker and suppresses normal cardiac function. Instead, one spiral wave can spawn more spirals until the heart is overtaken by multiple spiral waves, leading to disorganized contraction, and preventing the heart from supplying the body with blood.

For years, scientists and doctors have worked to find the best way to stop spiral waves before they get out of control. Yet for over half a century the best method has been a single strong electric shock. The 300 joules of energy required for defibrillation excites not just the heart cells, but the entire body, making it very painful for the patient.

Over the years researchers have experimented with using weaker shocks to reorganize arrythmias.

Source: Read Full Article